INNOVATIVE TEACHING TECHNOLOGIES IN THE NATURAL SCIENCE EDUCATION SYSTEM OF UKRAINE

Vitalii Honcharuk¹, Vladyslav Parakhnenko², Iryna Kyrpychova³, Maryna Dekarchuk⁴

¹Ph.D. (Pedagogy), Senior Lecturer, Faculty of Natural Sciences and Environmental Management, Department of Chemistry and Ecology, Pavlo Tychyna Uman State Pedagogical University, Uman, Ukraine, ORCID: https://orcid.org/0000-0002-3977-3612

²Ph.D., Lecturer-trainee, Department of Chemistry and Ecology, Pavlo Tychyna Uman State Pedagogical University, Uman, Ukraine, ORCID: https://orcid.org/0000-0002-4312-6194

³Ph.D. (Biology), Associated Professor Department of Horticulture and Ecology, State Institution «Luhansk Taras Shevchenko National University», Poltava, Ukraine, ORCID: https://orcid.org/0000-0003-4633-9379

⁴Ph.D. (Pedagogy), Associate Professor, Associate Professor of the Department of Physics and Integrative Technologies of Natural Sciences Education, Pavlo Tychyna Uman State Pedagogical University, Uman, Ukraine, https://orcid.org/0000-0002-0457-3792

Citation:

Honcharuk, V., Parakhnenko, V., Kyrpychova, I., & Dekarchuk, M. (2025). INNOVATIVE TEACHING TECHNOLOGIES IN THE NATURAL SCIENCE EDUCATION SYSTEM OF UKRAINE. Pedagogy and Education Management Review, (3(21), 52-70. https://doi.org/10.36690/2733-2039-2025-3-52-70

Received: August 28, 2025 Approved: September 29, 2025 Published: September 30, 2025

This article is an open access article distributed under the terms and conditions of the <u>Creative</u> <u>Commons Attribution (CC BY-NC 4.0) license</u>

Abstract. Ukraine's drive to modernize natural-science education demands a systematic uptake of innovative teaching technologies that meet the challenges of the information society and sustainable development while aligning with the New Ukrainian School's competence-based reform. As a vehicle for scientific literacy, ecological awareness, and research skills, natural science instruction increasingly depends on digital platforms, interactive and project/problembased methods, virtual and augmented laboratories, and interdisciplinary STEM/STEAM approaches. These tools support not only the acquisition of theory but also the formation of practical competences, critical and systems thinking, creativity, and the ability to apply knowledge in real contexts. Against this backdrop, the study analyzes the current state of innovation in Ukrainian science education and argues for deeper integration of digital, interactive, and projectoriented technologies to raise learning outcomes. Methodologically, it combines qualitative and quantitative procedures - literature analysis, questionnaires of 320 teachers and 460 pupils/students, interviews, pedagogical observation, and pilot implementations of STEM, blended learning, and virtual labs - summarized with descriptive statistics to capture effects and barriers. Findings show broad, though uneven, adoption: 87% of teachers actively use digital tools, 72% employ interactive strategies, 69% implement blended learning, and 54% use mobile apps or virtual labs. Student perspectives are consistent: 92% say digital tools improve understanding, 81% value interactive methods, 68% are interested in STEM/STEAM, and 73% actively use mobile applications. The main constraints are structural and human-capital related - insufficient material and technical support (42%), low digital competence among colleagues (37%), and overloaded curricula (21%); students most often point to a lack of modern equipment (48%), excessive theoretical workload (29%), and weak classroom integration of innovations (23%). Despite these hurdles, innovative technologies already enhance understanding, motivation, and practical skills and help cultivate a generation able to address complex environmental, technological, and social problems. Sustainable scaling now depends on infrastructure upgrades, continuous teacher professional development, tighter curriculum-assessment alignment for inquiry and projects, and expanded access to both physical and virtual STEM laboratories, consolidating a student-centered, competency-driven model in line with European and global standards.

Keywords: innovative learning technologies; natural sciences education; Ukrainian education system; digital tools in education; STEM education, elearning; interactive methods; educational innovation; blended learning; competence-based approach; environmental education; pedagogical technologies.

JEL Classification: 123, 121, 033, D83 Formulas: 0; fig. 16; tabl. 0; bibl. 20 **Introduction.** The rapid transformation of the global educational landscape in the twenty-first century has placed an unprecedented emphasis on the integration of innovative technologies into teaching and learning processes. These changes are especially visible in the field of natural science education, where the acquisition of knowledge and competencies is directly connected to the ability to model, analyze, and apply scientific principles in real-life contexts. The growing role of digitalization, the development of interactive platforms, and the introduction of artificial intelligence into education highlight the necessity of modernizing the traditional approaches to learning. Ukraine, as a country undergoing dynamic political, social, and economic transformations, is also rethinking the organization of its educational system. In this regard, natural science education has become a crucial arena for the implementation of innovative learning technologies aimed at improving both the quality of knowledge and the competitiveness of Ukrainian students in the international academic space.

The introduction of innovative technologies in education is not limited to the simple use of gadgets, digital resources, or internet-based tools. Rather, it implies a comprehensive pedagogical reorientation in which teachers and students engage in interactive, competency-based, and problem-solving learning. For natural science education, innovation means not only adopting multimedia presentations or online platforms but also integrating virtual and augmented reality, simulation software, digital laboratories, cloud-based collaboration tools, and artificial intelligence—supported environments. Such innovations enable students to explore complex natural phenomena, conduct experiments in safe digital spaces, and connect theoretical knowledge with practical skills. This transition is especially important in the Ukrainian context, where the modernization of science education is seen as a strategic priority in building human capital for sustainable development.

One of the central challenges of modern natural science education lies in reconciling traditional forms of knowledge transfer with the demands of the digital society. For decades, natural sciences in Ukraine were taught mainly through classroom lectures, laboratory sessions with limited resources, and textbook-centered approaches. While these methods contributed to fundamental knowledge, they often lacked flexibility, interactivity, and the capacity to stimulate creativity. With the global emphasis on STEM (Science, Technology, Engineering, and Mathematics) education and the growing need for research-oriented competencies, Ukraine faces the urgent task of transforming its teaching methods. Innovative learning technologies serve as the bridge between conventional pedagogy and the demands of the twenty-first century, allowing educators to cultivate not only subject knowledge but also critical thinking, digital literacy, teamwork, and problem-solving abilities.

The importance of these transformations becomes evident in the light of contemporary global challenges. The COVID-19 pandemic, for instance, revealed the vulnerability of traditional education systems and emphasized the necessity of flexible, technology-driven solutions. Ukrainian schools and universities, particularly those involved in natural science education, had to adapt rapidly to online platforms, digital content delivery, and virtual laboratories. This experience demonstrated both the potential of innovative technologies and the existing gaps in infrastructure, teacher

preparedness, and student accessibility. Therefore, the question is not whether innovation is necessary, but rather how to design, implement, and institutionalize innovative approaches to natural science education in Ukraine in a way that ensures inclusivity, quality, and long-term sustainability.

Furthermore, the modernization of natural science education in Ukraine should be analyzed in the context of international educational standards and frameworks. The European Higher Education Area (EHEA), the Bologna Process, and the United Nations Sustainable Development Goals (SDGs) all underscore the significance of science education as a driver of economic growth, social cohesion, and environmental responsibility. In particular, SDG 4 («Quality Education») directly addresses the need to ensure inclusive and equitable quality education, while SDG 9 («Industry, Innovation, and Infrastructure») emphasizes the role of science and innovation in sustainable development. For Ukraine, aligning its natural science education system with these global objectives requires the active adoption of innovative learning technologies as a core mechanism for bridging national traditions with international best practices.

Another critical dimension is the psychological and motivational impact of innovation on students. Numerous studies have shown that interactive and technology-enhanced learning environments significantly improve student engagement, foster deeper comprehension, and reduce the distance between abstract theory and practical application. In natural sciences, where abstract concepts such as atomic structures, molecular reactions, or ecological systems may be challenging to grasp, the use of innovative technologies helps visualize and simulate processes that are otherwise inaccessible. For example, digital simulations of chemical reactions, three-dimensional models of human anatomy, or virtual reality explorations of ecosystems not only enhance comprehension but also ignite curiosity and inspire independent research. Thus, innovation in education is not an end in itself but a means to cultivate creativity, inquiry-based learning, and lifelong learning habits among students.

Equally important is the role of teachers as facilitators of innovation. The success of any educational reform depends on the preparedness of educators to adopt, adapt, and creatively implement new technologies. In Ukraine, this issue is particularly sensitive due to generational gaps, differences in digital competence, and unequal access to technological resources across regions. The professional development of teachers, therefore, emerges as a decisive factor in the effectiveness of innovative learning technologies in natural science education. Investment in teacher training, digital literacy, and methodological support becomes an indispensable prerequisite for sustainable educational innovation.

The integration of innovative technologies in Ukraine's natural science education system is also influenced by broader socio-political factors. On the one hand, the government has declared modernization of education as a strategic priority, introducing reforms and programs aimed at enhancing the digital infrastructure of schools and universities. On the other hand, challenges such as economic instability, regional disparities, and the consequences of military conflict create significant obstacles to consistent implementation. Nevertheless, Ukraine's active participation in

international scientific cooperation, its growing IT sector, and the enthusiasm of younger generations for digital learning provide a favorable foundation for progress.

The transformation of natural science education in Ukraine through innovative learning technologies represents both a challenge and an opportunity. It is a challenge because it requires systemic reforms, significant investments, and cultural shifts in teaching and learning practices. At the same time, it is an opportunity to align Ukrainian education with global standards, empower students with twenty-first-century skills, and strengthen the country's intellectual and scientific potential. This article seeks to explore the conceptual foundations, practical models, and current trends in the implementation of innovative technologies in Ukraine's natural science education. By analyzing both international experiences and domestic realities, the study aims to contribute to the theoretical understanding and practical advancement of this crucial dimension of modern education.

Literature Review. In today's context of rapid digitalization and scientific advancement, the modernization of science education has become one of the most pressing challenges in Ukraine. Educational systems are expected not only to transfer factual knowledge but also to develop learners' research, analytical, collaborative, and digital competencies. Ukrainian scholars emphasize that effective science education must integrate innovative pedagogical and technological approaches to foster these competencies (Bida et al., 2024; Chichuk et al., 2024; Chyrva & Honcharuk, 2024). Recent studies explore how digital tools, project-based learning, and competency-oriented methodologies can transform both secondary and vocational education, yet systematic models of implementation remain underdeveloped.

Theoretical Approaches and Classification of Innovative Technologies. In the Ukrainian pedagogical discourse, innovative technologies are classified according to learning design, technological tools, and pedagogical purpose. These include project-based, problem-oriented, modular, and competence-based learning frameworks, as well as digital innovations such as distance learning, virtual laboratories, and electronic educational resources (Goncharuk et al., 2024; Honcharuk & Chyrva, 2025). Studies rooted in constructivist theory argue that knowledge is actively constructed through research and experimentation, thus emphasizing project-based and laboratory learning as key to developing scientific reasoning and practical skills (Parakhnenko et al., 2025; Khytruk et al., 2024). This shift from teacher-centered to learner-centered approaches marks an essential evolution in science education philosophy.

Empirical Trends and Evidence from Ukrainian Research. Ukrainian empirical research over the past five years highlights the pedagogical benefits of integrating digital platforms, STEM approaches, and interactive laboratories. The implementation of Google Classroom and Learning Management Systems (LMS) has enhanced student engagement and independent learning (Goncharuk et al., 2024). Project-based and STEM-oriented instruction has proven effective in increasing learners' motivation, critical thinking, and teamwork skills (Honcharuk et al., 2024). Furthermore, virtual simulations and augmented-reality laboratories have been shown to improve comprehension of abstract natural phenomena, particularly in chemistry, physics, and environmental studies (Khytruk et al., 2024; Parakhnenko et al., 2024). The literature

also underlines the importance of teacher professional development, noting that the digital competence of educators directly determines the success of innovation (Honcharuk et al., 2024; Kuchai et al., 2024).

Barriers and Implementation Challenges. Despite notable progress, systemic barriers still hinder the large-scale adoption of innovative technologies. Studies reveal persistent inequalities in access to digital infrastructure between urban and rural schools (Goncharuk et al., 2025; Vitalii Goncharuk et al., 2025). Teacher preparedness remains uneven, as many educators lack experience with digital tools or sufficient methodological support for redesigning lessons (Honcharuk et al., 2024; Khytruk et al., 2024). Moreover, misalignment between educational standards and project-based or inquiry-based formats prevents these approaches from being fully integrated into assessment systems. Financial constraints also limit schools' ability to maintain or scale innovations beyond the pilot stage (Honcharuk et al., 2025; Parakhnenko et al., 2025).

National Policies, Strategies, and Institutional Initiatives. Policy-oriented research underscores the role of state and institutional strategies in advancing educational innovation. Government initiatives related to digitalization, STEM education, and environmental education have been widely analyzed in recent publications (Parakhnenko et al., 2025; Honcharuk et al., 2024; Yuzyk et al., 2025). Scholars emphasize that long-term reform requires an integrated approach combining infrastructure investments, continuous teacher training, and open-access educational resources. Cross-sectoral collaboration between schools, universities, and private enterprises is identified as a driver of sustainable innovation ecosystems (Honcharuk et al., 2024; Parakhnenko et al., 2025). Recommendations often include establishing regional innovation hubs and professional networks for sharing best practices.

Despite the extensive body of literature on innovative teaching in Ukraine, several research gaps persist.

- 1. Lack of longitudinal studies most existing research evaluates short-term outcomes of pilot projects, while long-term impacts on student achievement and teacher competencies remain insufficiently explored.
- 2. Limited quantitative assessment few studies employ rigorous quantitative or mixed-method designs to measure the effectiveness of innovative technologies across different contexts.
- 3. *Economic and sustainability dimensions* the financial feasibility and long-term sustainability of technological innovations are rarely analyzed in Ukrainian science education research.
- 4. *Equity and inclusion issues* the digital divide between rural and urban schools, as well as disparities among learners with different needs, requires systematic investigation.
- 5. *Integration of AI and emerging technologies* while some research examines digital platforms, the role of artificial intelligence, data analytics, and smart sensor technologies in science education remains largely unexplored.

Addressing these gaps will enable future studies to move beyond descriptive analysis and contribute to evidence-based policymaking for Ukraine's educational modernization.

Aims. The main aim is to analyze the current state of science education in Ukraine and substantiate the need for integrating innovative technologies into the educational process to enhance learners' competencies and learning outcomes.

The objectives of the article are:

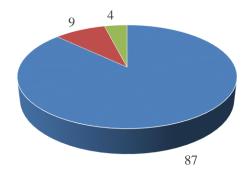
- 1. Systematize the essence and classify innovative educational technologies applied in Ukrainian and international practices of teaching natural sciences (e.g., digital, interactive, project-based, and simulation/AR-VR solutions).
- 2. Evaluate the effectiveness of digital, interactive, and project-oriented technologies in developing key competencies of pupils and students (scientific thinking, research skills, data analysis, teamwork, and digital literacy).
- 3. Identify and justify the pedagogical conditions (curriculum design, assessment alignment, teacher professional development, infrastructure and access, ethical/data-use standards) required for successful implementation of innovative technologies within Ukraine's science-education system.

Methodology. The methodological basis for the study of innovative teaching technologies in the natural science education system of Ukraine is a comprehensive approach that combines systemic, competency-based, and activity-based approaches. The systemic approach allows us to consider natural science education as a holistic educational system, where innovative technologies are a key factor in the modernization of content, methods, and forms of teaching. The competency-based approach focuses the study on the formation of subject-specific and interdisciplinary competencies in students, which are necessary for the integration of knowledge into practical activities. The activity-based approach ensures a focus on the active participation of students in the learning process through the use of interactive methods, digital resources, and experimental practices.

A set of research methods was used to achieve the goal. Theoretical methods: analysis, synthesis, generalization, and systematization of scientific, pedagogical, and methodological literature on innovative teaching technologies; comparative analysis of Ukrainian and foreign experience in implementing modern educational practices.

Empirical methods: pedagogical observation, questionnaires, and interviews with teachers and students to determine the effectiveness of using innovative technologies in the educational process; analysis of educational programs and digital educational platforms.

Methods of pedagogical experiment: testing elements of innovative technologies (STEM education, blended learning, use of virtual laboratories) in the educational process with subsequent evaluation of their effectiveness.


Methods of statistical processing: quantitative and qualitative analysis of the data obtained to substantiate the conclusions of the study.

Thus, the chosen methodology allows not only to identify current trends in the application of innovative technologies in the natural science education system of Ukraine, but also to determine their impact on improving the quality of knowledge,

developing critical thinking, and forming the ecological and scientific culture of students.

Results. In the course of researching the implementation of innovative teaching technologies in Ukraine's natural science education system, a survey was conducted among 320 teachers from general secondary and higher education institutions, as well as 460 students and high school pupils. The results of the data processing are presented in percentage terms and reflect the current state of innovation integration into the educational process.

1. Use of digital technologies in education. Figure 1 shows the extent to which teachers use digital technologies in their teaching practice, reflecting varying levels of engagement and institutional support for technology integration in science education.

- Actively use digital resources
- Use partially (insufficient institutional resources)
- Do not use (low digital competence)

Figure 1. Use of digital technologies in education (teachers)

Source: created by the authors based on the results of the survey

As shown in the chart, a vast majority of teachers (87%) actively employ digital tools in their work, confirming a strong trend toward technology-enhanced teaching. However, 9% of respondents use digital resources only partially, mainly due to insufficient institutional infrastructure, and 4% do not use them at all because of limited digital skills. These results indicate that while digitalization in education is progressing rapidly, continuous professional development and improved technical resources remain essential to ensure equitable access and full pedagogical integration of digital technologies.

Among pupils and students. Figure 2 illustrates students' perceptions of digital technologies in science learning, showing how digital tools, multimedia, and electronic resources affect their understanding, motivation, and learning balance.

As illustrated, the majority of pupils and students (92%) believe that digital tools significantly enhance their understanding of natural science topics, while 65% report that multimedia materials increase learning motivation. However, 18% of students note that excessive use of digital resources can sometimes overload the learning process. These results confirm that technology integration is generally perceived as beneficial, yet it also emphasizes the importance of maintaining balance and ensuring pedagogically justified use of digital resources in science education.

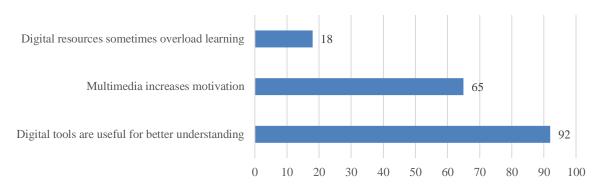
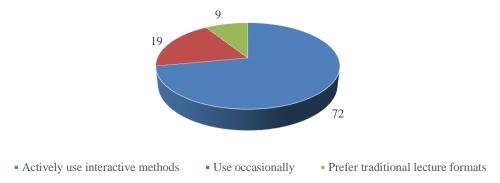
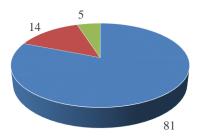


Figure 2. Use of digital technologies in education (pupils and students)

Source: created by the authors based on the results of the survey

2. *Interactive teaching methods*. Figure 3 shows the extent to which teachers apply interactive teaching methods, highlighting the balance between active use, occasional application, and preference for traditional lecture-based instruction.




Figure 3. Interactive teaching methods (teachers)

Source: created by the authors based on the results of the survey

The Figure 3 shows that a significant majority of teachers (72%) actively use interactive teaching methods, confirming the growing popularity of learner-centered approaches in modern classrooms. Meanwhile, 19% of educators apply such methods occasionally, and only 9% continue to rely mainly on traditional lecture formats. These findings indicate a clear shift toward interactive and experiential learning practices, although a small portion of teachers still face challenges in fully transitioning from conventional methods to innovative pedagogical models.

Figure 4 illustrates students' perceptions of how interactive teaching methods influence their understanding, engagement, and overall learning experience in natural sciences.

As the figure shows, most students (81%) consider interactive methods highly effective in improving their understanding of natural sciences, confirming the value of active engagement in the learning process. A smaller proportion (14%) feel that such activities consume too much class time, while 5% report no noticeable difference compared to traditional instruction.

- Improve understanding of natural sciences
 Take too much class time
- No noticeable difference vs traditional

Figure 4. Interactive teaching methods (pupils and students)

Source: created by the authors based on the results of the survey

Overall, the findings highlight that interactive learning is perceived positively by students, though careful time management and balanced lesson design are essential to maintain its efficiency.

3. STEM and STEAM education. Figure 5 shows the extent to which educational institutions integrate STEM and STEAM approaches into their curricula, reflecting varying levels of activity and resource availability.

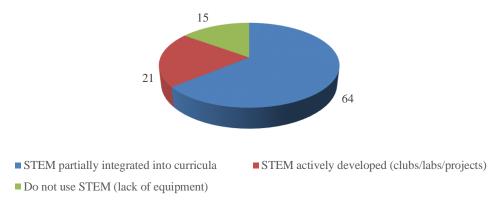


Figure 5. STEM and STEAM education (teachers)

Source: created by the authors based on the results of the survey

As shown in the figure, most educational institutions (64%) have partially integrated STEM approaches into their curricula, while 21% actively develop STEM education through specialized clubs, laboratories, and interdisciplinary projects. However, 15% of institutions do not implement STEM due to insufficient equipment and resources. These findings indicate a positive trend toward incorporating STEM and STEAM principles into science education in Ukraine, though the pace of implementation largely depends on the availability of technical infrastructure and institutional support.

Figure 6 presents pupils' and students' attitudes toward STEM and STEAM education, illustrating their level of interest, access to modern laboratories, and engagement in innovative learning activities.

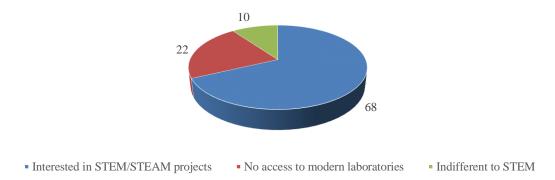


Figure 6. STEM and STEAM education (pupils and students)

Source: created by the authors based on the results of the survey

As shown in the figure 6, a majority of students (68%) express a strong interest in participating in STEM and STEAM projects, reflecting growing enthusiasm for interdisciplinary and technology-based learning. However, 22% report a lack of access to modern laboratories, which limits their opportunities for practical experimentation, while 10% remain indifferent to STEM initiatives. These findings indicate that although students are highly motivated to engage in scientific and creative projects, ensuring equal access to technological infrastructure is essential for inclusive and effective STEM education.

4. Use of project-based learning. Figure 7 demonstrates the extent to which teachers apply project-based learning in teaching natural sciences, highlighting differences in the frequency and consistency of its use.

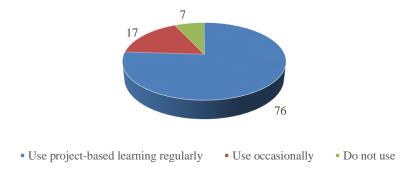


Figure 7. Use of project-based learning (teachers)

Source: created by the authors based on the results of the survey

As the figure 7 indicates, the majority of teachers (76%) regularly use project-based learning, confirming its recognition as an effective method for developing students' practical skills and critical thinking. Another 17% apply it occasionally, often due to time or resource limitations, while 7% do not use project-based approaches at all. These findings suggest that project-based learning is widely implemented in educational practice, although its consistent application still depends on teachers' methodological readiness and institutional support.

Figure 8 presents pupils' and students' opinions on project-based learning, showing their perceptions of its effectiveness, time requirements, and impact on group work.

Figure 8. Use of project-based learning (pupils and students)

Source: created by the authors based on the results of the survey

As the figure 8 demonstrates, a vast majority of students (84%) believe that participation in project-based learning helps develop practical skills and critical thinking, confirming its strong educational value. Meanwhile, 11% consider such projects too time-consuming, and 5% do not perceive any significant benefit from group tasks. These findings indicate that project-based learning is widely appreciated by students for its practical relevance, though it requires effective time management and well-structured teamwork to maintain engagement and efficiency.

5. Use of blended learning technologies. Figure 9 illustrates the extent to which teachers incorporate blended learning technologies into their teaching practice, showing the balance between full implementation, partial use, and preference for traditional instruction.

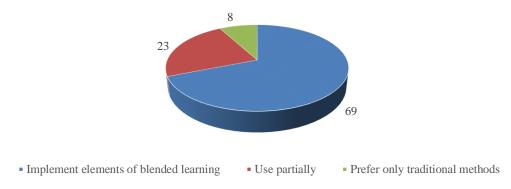


Figure 9. Use of blended learning technologies (teachers)

Source: created by the authors based on the results of the survey

As shown in the figure 9, most teachers (69%) implement elements of blended learning, combining online and offline methods to enhance flexibility and engagement. Another 23% use such technologies only partially, often due to limited resources or insufficient training, while 8% prefer exclusively traditional teaching methods. These results demonstrate a clear trend toward blended learning integration in science

education, though further methodological support and digital competence development are needed to ensure its consistent and effective application.

Figure 10 shows pupils' and students' perceptions of blended learning technologies, highlighting their views on convenience, discipline, and the overall advantages of combining online and offline study formats.

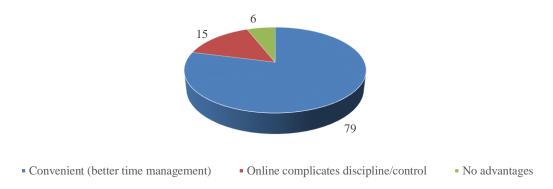


Figure 10. Use of blended learning technologies (pupils and students)

Source: created by the authors based on the results of the survey

As illustrated in the figure 10, the majority of students (79%) find blended learning convenient, emphasizing its contribution to better time management and flexibility in organizing their studies. However, 15% believe that the online component complicates discipline and control, while 6% do not see any significant advantages in this learning format. These results indicate that blended learning is largely perceived as effective and practical, although maintaining student engagement and self-regulation remains an important challenge for educators.

6. Use of mobile applications and virtual laboratories. Figure 11 illustrates how teachers use mobile applications and virtual laboratories in their teaching practice, showing the extent of their integration into the educational process.

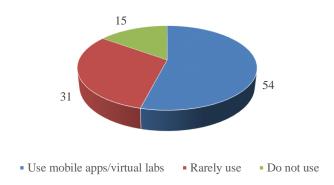


Figure 11. Use of mobile applications and virtual laboratories (teachers)

Source: created by the authors based on the results of the survey

As shown in the figure 11, more than half of the teachers (54%) actively use mobile applications and virtual labs to conduct simulations, tests, and online experiments, demonstrating growing digital engagement in teaching. Meanwhile, 31% use such tools only occasionally, often due to limited access to technology or lack of

methodological support, and 15% do not use them at all. These results highlight a positive trend toward adopting mobile and virtual learning tools, though ensuring equal access and ongoing professional training remains crucial for their effective implementation.

Figure 12 presents pupils' and students' use of mobile applications and virtual laboratories in studying natural sciences, showing the degree of their engagement and accessibility to digital learning tools.

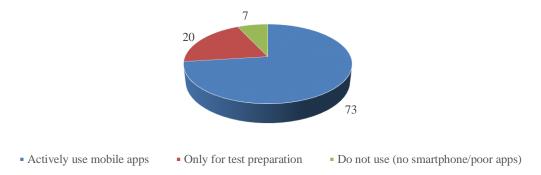


Figure 12. Use of mobile applications and virtual laboratories (pupils and students)

Source: created by the authors based on the results of the survey

As illustrated in the figure 12, the majority of students (73%) actively use mobile applications to support their studies, particularly for experiments, practice, and interactive exercises. Another 20% use such tools only for test preparation, while 7% do not use them due to the lack of a smartphone or the low quality of available applications. These findings indicate a high level of digital engagement among students, yet they also emphasize the need to expand access to high-quality educational applications and ensure that all learners can benefit from mobile and virtual learning technologies.

7. Main barriers to innovation. Figure 13 shows teachers' views on the main barriers that hinder the implementation of innovative technologies in education, highlighting key institutional, technical, and methodological challenges.

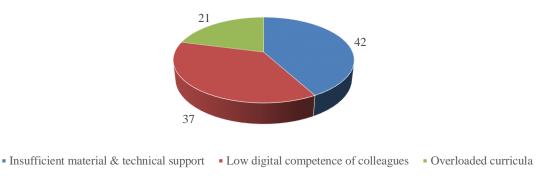


Figure 13. Main barriers to innovation (teachers)

Source: created by the authors based on the results of the survey

As illustrated in the figure 13, the most significant obstacle identified by teachers is insufficient material and technical support (42%), followed by the low level of digital

competence among colleagues (37%) and overloaded curricula (21%). These results indicate that while educators are generally open to innovation, their efforts are constrained by inadequate infrastructure, limited professional training, and rigid curricular frameworks. Overcoming these barriers requires coordinated institutional investment, continuous teacher development, and modernization of educational standards to foster sustainable innovation in teaching practice.

Figure 14 presents pupils' and students' perspectives on the main barriers to implementing innovative technologies in education, emphasizing material, organizational, and methodological challenges.

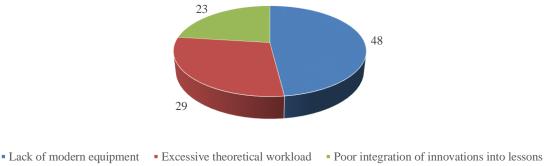


Figure 14. Main barriers to innovation (pupils and students)

Source: created by the authors based on the results of the survey

As shown in the figure, nearly half of the students (48%) identify the lack of modern equipment as the primary barrier to innovation, while 29% point to an excessive theoretical workload, and 23% note poor integration of innovations into regular lessons. These findings suggest that students are aware of the systemic issues limiting the modernization of education, highlighting the urgent need to improve technical infrastructure, balance theory with practice, and strengthen the methodological alignment of innovative technologies with everyday learning activities.

8. Overall assessment of the effectiveness of innovative technologies. Figure 15 shows teachers' overall assessment of the effectiveness of innovative technologies in developing students' scientific competencies and improving the quality of science education.

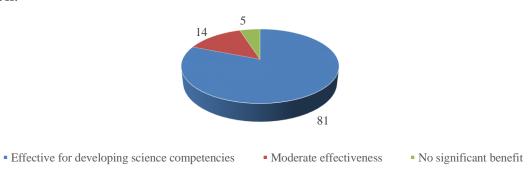


Figure 15. Overall assessment of the effectiveness of innovative technologies (teachers)

Source: created by the authors based on the results of the survey

As illustrated in the figure 15, the majority of teachers (81%) consider innovative technologies effective for enhancing scientific competencies, confirming their pedagogical value and practical relevance. Meanwhile, 14% assess their impact as moderate, and only 5% see no significant benefit. These results demonstrate strong support among educators for the integration of innovative tools in teaching, while also indicating the need for ongoing methodological refinement and professional training to maximize their educational potential.

Figure 16 presents pupils' and students' overall assessment of the effectiveness of innovative technologies in learning natural sciences, reflecting their perceptions of how innovations influence understanding and the learning process.

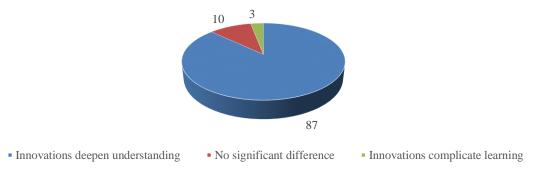


Figure 16. Overall assessment of the effectiveness of innovative technologies (pupils and students)

Source: created by the authors based on the results of the survey

As shown in the figure 16, an overwhelming majority of students (87%) believe that innovative technologies deepen their understanding of natural sciences, demonstrating a clear appreciation of digital and interactive learning tools. Meanwhile, 10% report no significant difference compared to traditional methods, and only 3% find that innovations complicate learning. These results confirm that innovations are generally viewed as beneficial and motivating, reinforcing their role as an essential component of modern science education.

Thus, overall, the study showed that more than 80% of pupils and teachers have a positive perception of innovative teaching technologies. At the same time, the key problems remain insufficient technical infrastructure, uneven implementation of STEM, and a lack of systematic training for teachers.

The results in percentages show that innovative technologies have already become an integral part of the natural science education system in Ukraine, but they require further institutional support, modernization of the material and technical base, and improvement of the qualifications of teaching staff.

Discussion. Innovative teaching technologies in Ukraine's natural science education system are becoming particularly relevant at the present stage, as they respond to new social, economic, and technological challenges. The educational process in the field of natural sciences should not only transfer knowledge, but also develop research thinking, creativity, the ability to work with information, and apply knowledge in real-life situations. That is why the discussion around the implementation of innovative educational technologies is important and multifaceted.

First of all, it should be emphasized that innovations in education are not limited to digitization or the use of modern technical means. They cover a wider range of changes, from methodological approaches to the organization of the learning environment. In science education in Ukraine, several key areas of innovation can be identified: interactive methods, project-based research activities, STEM and STEAM education, digital laboratories, blended and distance learning.

One of the central issues of discussion is the effectiveness of these technologies in developing the natural science competence of pupils and students. Practice shows that the use of virtual laboratories and simulations compensates for the insufficient material resources of many educational institutions, providing the opportunity to conduct experiments that would otherwise require significant resources or be dangerous. At the same time, virtual technologies cannot completely replace «live» experiments, as practical activities in the natural sciences develop skills of observation, accuracy, and responsibility. This necessitates a combination of traditional and modern methods.

Another important aspect is the training of teaching staff. The introduction of innovative technologies is only possible if teachers and lecturers not only have digital tools at their disposal, but are also able to integrate them into the learning process in a methodologically sound manner. Studies show that a significant proportion of teachers in Ukraine are open to innovation but feel the need for systematic support – improved qualifications, methodological recommendations, and the creation of a single platform for sharing experiences.

Another significant challenge is the inequality in access to innovative technologies between urban and rural schools, between institutions with different financial capabilities. This problem has become particularly acute in the context of distance learning, when technical support has become a determining factor in the quality of education. When discussing this topic, it is important to bear in mind that innovation in science education should not be elitist, but rather widespread and accessible to every student, regardless of their place of residence or social status.

Equally important is the issue of integrating innovative technologies in the context of a competency-based approach. Innovations should not only diversify the educational process, but also contribute to the formation of key competencies: the ability to think critically, work with information sources, and apply knowledge to solve real-world problems. In this context, project-based and research-based learning has significant potential, as it allows theory to be combined with practice and helps students develop research skills.

There is ongoing debate in scientific and educational circles about the optimal balance between traditional and innovative teaching methods. Some scholars emphasize the need for a radical overhaul of the educational process, focusing on digital technologies, adaptive platforms, and virtual environments. Others warn against excessive «virtualization» of education, stressing that without live experimentation and personal contact with the teacher, the learning process loses its depth and motivational potential. Thus, the optimal strategy is a combination that allows the strengths of each approach to be utilized.

It is also worth noting the role of innovation in increasing motivation to learn. Modern digital tools – interactive whiteboards, educational games, mobile applications – make natural sciences more accessible and understandable to young people. At the same time, there is a danger that excessive gamification may lower the academic level of education. This again requires teachers to strike a balance between innovation and traditional methods.

Thus, the discussion of the problem of innovative teaching technologies in the natural science education system of Ukraine boils down to several key conclusions. First, innovations are an integral part of the modernization of education; they contribute to improving its quality and relevance to contemporary challenges. Second, the success of innovation implementation largely depends on teachers, their readiness for change, and methodological support. Third, ensuring equal access to innovation requires a state policy aimed at developing the material and technical base of educational institutions and creating a digital education infrastructure.

Therefore, innovative technologies in Ukraine's natural science education system are not an end in themselves, but rather a tool for shaping modern, competent graduates who are capable of thinking scientifically and acting creatively and responsibly in the complex world of the 21st century.

Conclusions. In conclusion, the implementation of innovative learning technologies in the Ukrainian education system significantly enhances the quality and effectiveness of natural sciences education. The integration of digital tools in education, e-learning, and blended learning approaches enables students to engage actively with scientific concepts, fostering a deeper understanding of STEM disciplines. Employing interactive methods and modern pedagogical technologies contributes to the development of critical thinking, problem-solving skills, and practical competencies essential for contemporary scientific challenges.

The focus on educational innovation in natural sciences ensures that learners not only acquire theoretical knowledge but also develop practical abilities through real-world applications, particularly in environmental education. By adopting a competence-based approach, teachers can tailor learning experiences to meet individual student needs while promoting lifelong learning skills. Moreover, the combination of traditional teaching methods with advanced technological tools strengthens student motivation, collaboration, and independent research skills.

Overall, the strategic incorporation of innovative learning technologies in Ukraine's natural sciences education reflects a progressive shift towards a modern, student-centered, and competency-driven system. This transformation not only aligns with global trends in STEM education but also prepares young learners to contribute effectively to scientific development and sustainable environmental solutions. Continued investment in educational innovation, teacher training, and technology infrastructure will be crucial for ensuring the long-term success and scalability of these advancements in the Ukrainian context.

Funding. The authors declare that no financial support was received for the research, authorship, and/or publication of this article.

Conflict of interest. The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement. The authors declare that no Generative AI was used in the creation of this manuscript.

Publisher's note. All claims expressed in this article are solely those of the author and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

References:

- 1. Bida, O. A., Honcharuk, V. V., & Rokosovyk, N. V. (2024). Professional mobility in the context of distance learning. *Scientific Notes. Series: Pedagogical Sciences*, 6, 133–137. https://doi.org/10.59694/ped_sciences.2024.06.133
- 2. Chichuk, A. P., Honcharuk, V. V., & Kvasniuk, V. V. (2024). Development of information competence of specialists in the educational environment. *Scientific Notes. Series: Pedagogical Sciences*, 6, 43–47. https://doi.org/10.59694/ped_sciences.2024.06.043
- 3. Chyrva, H. M., & Honcharuk, V. V. (2024). Methodological principles of the formation of business ethics in modern conditions. *Visnyk of Science and Education. Series: Philology, Pedagogy, Sociology, Culture and Art, History and Archaeology, 8*(26), 583–593.
- 4. Goncharuk, V. V., Parakhnenko, V. G., & Davyskyba, V. V. (2024). Distance learning: Status and prospects in higher education institutions of Ukraine. *Perspectives and Innovations in Science*, *1*(35), 100–111. http://perspectives.pp.ua/index.php/pis/article/view/8593/8639
- 5. Goncharuk, V. V., Parakhnenko, V. G., Sopov, D. S., Sopova, N. V., & Yurovchik, V. H. (2025). Management of environmental safety in Ukraine: Current challenges of anthropogenic landscape changes. *Scientific and Practical Journal "Ecological Sciences"*, *I*(58), 44–48. https://doi.org/10.32846/2306-9716/2025.eco.1-58.8
- 6. Honcharuk, V., Chyrva, H. (2025). The influence of studying the methodology of scientific research on the formation of specialists in the conditions of high schools. *Perspectives and Innovations in Science*, 2(48), 45–56. https://doi.org/10.52058/2786-4952-2025-2(48)
- 7. Honcharuk, V., Pavlyshynets, O., Petryshak, B., Monolatii, T., & Boichuk, N. (2024). Formation of connections between the involvement of students in learning and the development of competencies. *Relacoes Internacionais no Mundo Atual*, 1(43), 237–246. https://revista.unicuritiba.edu.br/index.php/RIMA/article/view/6747
- 8. Honcharuk, V., Pidlisnyi, Y., Dekarchuk, M., Podzerei, R., Zadorozhna, O., Datsenko, A., Liakhovska, N. (2024). Environmental and economic damage to agriculture as a result of the explosion of the Kahovska hydroelectrical station. *Management Theory and Studies for Rural Business and Infrastructure Development, 46*(2), 229–239. https://ejournals.vdu.lt/index.php/mtsrbid/article/view/4908
- 9. Honcharuk, V., Pidlisnyi, Y., Inyk, S., & Pobirchenko, O. (2024). Ways to increase the effectiveness of state regulation of the socio-economic development of Ukraine and artistic activity, taking into account the environmental stimulation of society during the war. *Public Administration and Law Review, 1*(17), 4–12. https://doi.org/10.36690/2674-5216-2024-1-4
- 10. Khytruk, V. I., Honcharuk, V. V., Dekarchuk, S. O., & Davyskyba, V. V. (2024). Innovative technologies and teaching methods in higher education: Problems and perspectives. *Scientific Innovations and Advanced Technologies*, 1(29), 573–585. http://perspectives.pp.ua/index.php/nauka/issue/view/202/29326
- 11. Kravec, I. S., Parakhnenko, V. G., Shevchenko, A. M., & Goncharuk, V. V. (2024). Influence of invasive plants on biodiversity of forest ecosystems. *Science and Technology Today*, *9*(37), 675–685. https://doi.org/10.52058/2786-6025-2024-9(37)-675-685
- 12. Kuchai, T. P., Khryk, V. M., & Goncharuk, V. V. (2024). Ensuring readiness of future specialists for the implementation of ecological education tasks. In *Modern Information Technologies and Innovative Teaching Methods in Specialist Training: Methodology, Theory, Experience, Problems* (Vol. 71, pp. 151–158). Vinnytsia: TOV "Druk Plus". https://doi.org/10.31652/
- 13. Parakhnenko, V. G., Goncharuk, V. V., Berezenko, K. S., & Kirpichova, I. V. (2024). Organization and spatial distribution of living systems in biocenoses. *Science and Technology Today*, 9(37), 754–762. https://doi.org/10.52058/2786-6025-2024-9(37)-754-762
- 14. Parakhnenko, V. G., Goncharuk, V. V., Dushechkina, N. (2024). Pedagogical analysis of the content and structure of ecological cultures of environmental specialists. *Pedagogy and Education Management Review*, *1*(15), 4–16. https://doi.org/10.36690/2733-2039-2024-1-4
- 15. Parakhnenko, V. G., Goncharuk, V. V., & Mandebura, S. V. (2025). Methodology of integrated ecological research: From landscape ecology to general and neoecology. *Science and Technology*, 5(46), 1893–1908. https://doi.org/10.52058/2786-4952-2025-5(51)-406-415

- 16. Parakhnenko, V. G., Goncharuk, V. V., & Pavlyshynets, O. (2025). Methodology and organization of ecological research in the system of landscape ecology and radioecological monitoring of radionuclide-contaminated territories. *Environmental Problems*, 10(2), 119–126. https://doi.org/10.23939/ep2025.02.119
- 17. Parakhnenko, V. G., Goncharuk, V. V., & Pidlisnyi, E. V., Brykin, E. V. (2025). Ecological law and management of environmental protection activities: Integration of general and landscape ecology principles. *Society and National Interests*, *3*(11), 655–669. https://doi.org/10.52058/3041-1572-2025-3(11)-655-668
- 18. Parakhnenko, V. G., Goncharuk, V. V., Podzerei, R. V. (2025). Management of resource-ecological safety of a region under radioecological threats and nature protection. *Scientific and Practical Journal "Ecological Sciences"*, *1*(58), 65–69. https://doi.org/10.32846/2306-9716-2025.eco.1-58.11
- 19. Yuzyk, O., Honcharuk, V., Pelekh, Y., Bilanych, L., Sirenko, P., Voitovych, I., Yuzyk, M. (2025). Research on generative artificial intelligence technologies in education: Opportunities, challenges, and ethical aspects. *BRAIN-Broad Research in Artificial Intelligence and Neuroscience*, 16(1), 139–151. https://drive.google.com/file/d/1dpubfp3RCBmWbAesI2eyyMrrtZiQmdFA/view
- 20. Vitalii Goncharuk, O. Tsyhanok, V. Parakhnenko, N. Susla, & O. Sanivskyi. (2025). Distance education "through student-centrism" in higher education institutions of Ukraine during the war. *Perspectives and Innovations in Science*, *I*(47), 351–363. https://doi.org/10.52058/2786-4952-2025-1(47)-351-363